On the Computation of Battle-lemarie's Wavelets

نویسنده

  • MING-JUN LAI
چکیده

We propose a matrix approach to the computation of BattleLemarié's wavelets. The Fourier transform of the scaling function is the product of the inverse F(x) of a square root of a positive trigonometric polynomial and the Fourier transform of a B-spline of order m . The polynomial is the symbol of a bi-infinite matrix B associated with a B-spline of order 2m . We approximate this bi-infinite matrix B2m by its finite section As , a square matrix of finite order. We use As to compute an approximation \s of x whose discrete Fourier transform is F(x). We show that xs converges pointwise to x exponentially fast. This gives a feasible method to compute the scaling function for any given tolerance. Similarly, this method can be used to compute the wavelets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Computation of Battle{Lemari e's Wavelets

We propose a matrix approach to the computation of Battle-Lemari e's wavelets. Since the Fourier transform of the scaling function is the product of the inverse F(x) of a square root of a positive trigonometric polynomial and the Fourier transform of a b-spline of order m. The polynomial is the symbol of an bi-innnite matrix B associated with b-spline of order 2m. We approximate B 2m by its nit...

متن کامل

On the Digital Filter Associated with Bivariate Box Spline Wavelets

Battle-Lemari e's wavelet has a nice generalization in the bivariate setting. This generalization is called bivariate box spline wavelets. The magnitude of the lters associated with the bivariate box spline wavelets is shown to converge to an ideal high-pass lter when the degree of the bivariate box spline functions increases to 1. The passing and stopping bands of the ideal lter are dependent ...

متن کامل

On Digital Filters Associated with Bivariate Box Spline Wavelets

Battle-Lemari e's wavelet has a nice generalization in the bivariate setting. This generalization is called bivariate box spline wavelets. The magnitude of the lters associated with the bivariate box spline wavelets is shown to converge to an ideal high-pass lter when the degree of the bivariate box spline functions increases to 1. The passing and stopping bands of the ideal lter are dependent ...

متن کامل

Permeability upscaling in fractured reservoirs using different optimized mother wavelets at each level

We use a multi-resolution analysis based on a wavelet transform to upscale a 3D fractured reservoir. This paper describes a 3D, single-phase, and black-oil geological model (GM) that is used to simulate naturally-fractured reservoirs. The absolute permeability and porosity of GM is upscaled by all the possible combinations of Haar, Bior1.3, and Db4 wavelets in three levels of coarsening. The ap...

متن کامل

Digital filters associated with bivariate box spline wavelets

Battle-Lemarié’s wavelet has a nice generalization in a bivariate setting. This generalization is called bivariate box spline wavelets. The magnitude of the filters associated with the bivariate box spline wavelets is shown to converge to an ideal high-pass filter when the degree of the bivariate box spline functions increases to `. The passing and stopping bands of the ideal filter are depende...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010